V rámci projektu Technické univerzity Chemnitz a společnosti IK Elektronik GmbH se do středu zájmu výzkumu a vývoje dostal bezdrátový systém snímačů integrovaný přímo do šroubu, který měří a zpracovává signály ze senzoru a odesílá je k dalšímu zpracování. Elektronický systém uvnitř šroubu přitom pracuje bez baterie, přeměňuje kinetickou energii z vibrací daného prvku na elektrickou a tuto energii dále využívá k přizpůsobení a zpracování signálu. Na vnější straně se však takový snímač od běžného šroubu nijak neliší.
Jako stěžejní se jeví osazení zmíněného šroubu na nejrůznějších místech právě ve vozidlech – např. zámky pásů, tažná zařízení přívěsů, a především čidla v oblasti převodovky nebo motoru. Činnost samotného šroubu, který musí ustát nasazení i v náročných podmínkách, nesmí nijak ovlivnit prach ani stříkající voda. Řešení by proto mělo být uzavřené a maximální možnou měrou chráněné.
Systém musí být rovněž stabilní a nezávislý na teplotě, zejména pak z hlediska roztažnosti použitého materiálu. Důvod spočívá v provozu vozidla za nejrůznějších teplot – během zimy, v létě i na rozmanitých zeměpisných šířkách. Zároveň by měl být kvůli omezenému prostoru pokud možno co nejmenší.
Obr. 1 Uspořádání elektroniky šroubu se snímači v různých provedeních (zdroj: IK Elektronik GmbH)
Vibrace se ve vozidlech vyskytují s různými amplitudami a frekvencemi. Převodníky energie pak generují střídavá napětí s různou amplitudou a také kmitočtem. Zvláště u velmi malých amplitud vibrací vznikají též velmi malá střídavá napětí. Taková napětí ale běžné usměrňovače bez velkých ztrát zpracovat nedokážou. Potřebné zvyšující měniče musí vykázat vysokou účinnost a také odpovídající vlastnosti po zapnutí. Měniče energie spolu s obvody pro její řízení by rovněž měly být optimalizovány pro určité rozsahy kmitočtů vibrací a vývoj samotného měniče energie kromě toho neusnadňují ani požadované mechanické vlastnosti, včetně nasazení v kovovém prostředí.
Při vývoji elektroniky se společnost IK Elektronik potýkala s problémem jak s maximální účinností získat z minimálních střídavých napětí použitelné napětí stejnosměrné a nabytou energii vhodným způsobem uchovat. Podle množství uložené energie pak připojenou elektroniku provozujeme delší nebo též kratší dobu.
Většina použitých metod získávání energie z vibrací je založena na elektrodynamických, piezoelektrických, elektrostatických nebo elektromagnetických principech. K nasazení ve šroubu bude dobrou volbou právě elektrodynamický měnič složený z válcového magnetu a cívky, která ho obklopuje, protože ve vyladěném systému vykáže velké rezonanční převýšení. Převod vibrací z okolí na elektrickou energii zde staví na vztažném pohybu mezi magnetem a cívkou dle Faradayova zákona. Literatura zmiňuje různé druhy elektrodynamického získávání energie, které lze odlišit dle mechanické konstrukce systému – využíváme zde ohybu, magnetických nebo spirálových pružin.
Obr. 2 Příklad mechanické konstrukce měniče energie s pevnými a pohyblivými částmi
Společnost IK Elektronik vyvinula prototyp modulu umístěného v hlavě šroubu. Ten obsahuje usměrňovače a násobiče napětí, úložiště s kapacitami a obvody pro řízení energií, MCU s aplikací pro snímače (kontakt, teplota a tlak), vf přijímač s vysílačem a konečně anténu. Ve spojení s elektrodynamickým měničem energie ve šroubu lze navrhovat různé aplikace. Jejich funkci pak optimalizujeme na základě energie dostupné z vibrací v konkrétním cílovém prostředí.
Obr. 3 Metoda konečných prvků a rozložení magnetického pole měniče energie senzorového systému
V případě měniče energie a jeho konstrukce byly zkoumány různé možnosti a s využitím principu magnetické pružiny pak navržena i dvě řešení. Na Technické univerzitě Chemnitz (MST) k vytváření proměnlivého magnetického pole v závislosti na okolních vibracích využili pohyblivého magnetu mezi dvěma dalšími, pevně osazenými. V takto vyvinuté konstrukci budou cívka a její vývody pevně uchycené, čímž dosáhneme vyšší spolehlivosti systému.
Množství energie získané z měniče závisí především na velikosti magnetu a intenzitě magnetického pole, průměru vinutí a počtu závitu cívky, budicí frekvenci a amplitudě – nezávisle na použité konfiguraci, tzn. pohybující se magnet nebo cívka. Při návrhu měniče energie byla použita metoda konečných prvků (FEM). Dokážeme tedy pracovat s různými pohybovými profily a rovněž i velikostmi.
Obr. 4 Výstupní napětí naprázdno u navrženého měniče energie s magnetickou pružinou (a) pro amplitudy buzení 1 a 2 mm s drátem o průměru 0,2 mm (b) pro amplitudy 0,5, 1 a 2 mm s drátem o průměru 0,09 mm
S využitím pohyblivého magnetu zhotovila univerzita dva prototypy a bylo změřeno napětí naprázdno. Testovací sestava byla tvořena vibračním budičem na pozici umělého zdroje vnějších kmitů s možností sledování laserovým snímačem měřícím vychýlení a také stimulaci kmitočtem. Společně s laserovým snímačem, kontrolérem a zesilovačem pracuje vibrační budič v uzavřeném regulačním obvodu, kterým lze amplitudu kmitů též přizpůsobit. Pokusy byly provedeny s amplitudou 0,5 mm, 1 mm a 2 mm ve frekvenčním rozsahu 5 až 30 Hz – viz obr. 4.
Rezonanční kmitočet takové sestavy může dle použité cívky a výchylky buzení ležet v oblasti 20 až 30 Hz. S využitím principu magnetické pružiny pak lze rezonanční frekvenci poměrně snadno změnit. Jak ukazují naměřené hodnoty, bylo dosaženo špičkových napětí naprázdno přesahujících 500 mV.