V předchozím čísle jsme popsali základní vlastnosti nového obvodu EM8500 pro správu napájení, jeho hlavní parametry a oblasti použití. V tomto článku se budeme věnovat základním pracovních módům obvodu a jeho typickým zapojením. Také budou stručně popsány jeho možnosti nastavení a konfigurace.
Obvod EM8500 může v podstatě pracovat ve dvou základních režimech. V prvním případě je pro napájení aplikace použit harvesting element a obvod automaticky inteligentně přepíná na napájení z primárního článku pouze, pokud není dostatek energie z harvesting elementu. Ve druhém případě je kromě harvesting elementu použit i akumulátor, tedy dlouhodobý zdroj energie (LTS), který je doplněn krátkodobým zdrojem energie (STS), což je nejčastěji tzv. superkapacitor – supercap.
V obou případech je také automaticky aktivní funkce kontroly a hlídání minimální a maximální úrovně napětí na připojeném akumulátoru (LTS) pro zajištění jeho ochrany při nabíjení. Také je monitorováno napětí na harvesting elementu a při jeho poklesu pod minimální úroveň napětí, typickou pro konkrétní harvesting element, je vypnuta funkce DCDC konvertoru, aby nedocházelo ke zbytečným ztrátám energie v době, kdy není na harvesting elementu k dispozici dostatek energie. Výstupní napětí je samozřejmě udržováno v nastavených mezích, bezpečných pro připojenou aplikaci.
V tomto režimu je aplikace napájena buď ze solárního článku, termoelektrického (TEG) generátoru, nebo z připojené baterie – primárního článku. Obvod EM8500 kontroluje a řídí tok energie z těchto elementů přímo do aplikace. Díky celkem čtyřem nezávisle ovládaným napěťovým výstupům VSUP, VAUX[0-2] je obvod EM8500 schopen vypínat ty části připojené aplikace, která zrovna nevyžadují přísun elektrické energie a tím významně šetří celkovou proudovou spotřebu. Obvod EM8500 v tomto režimu také nabízí možnost prodloužení doby života primárního článku s pomocí připojeného harvesting elementu.
Ve druhém režimu je aplikace také napájena buď ze solárního článku, nebo termoelektrického (TEG) generátoru, ale kromě akumulátoru, který zde pracuje jako dlouhodobý zdroj energie (LTS), je zde i prvek pro krátkodobé dodávky energie, super-cap (STS) pro ošetření situací, kdy je vyžadován velmi rychlý start celého systému, není dostatek energie v LTS elementu apod. Obvod EM8500 opět kontroluje a řídí tok energie z vstupních zdrojů, z LTS a STS elementů do aplikace a zároveň řídí a kontroluje nabíjení připojeného akumulátoru (LTS), případně super kapacitoru (STS) a současně zajišťuje inteligentní přepínání mezi těmito zdroji energie. Stejně jako v předchozím případě je obvod EM8500 schopen vypínat ty bloky připojené aplikace, které nepotřebují dodávku elektrické energie. Využít lze i napájení pomocí USB rozhraní, kdy je navíc umožněno velmi rychlé nabití LTS elementu.
Na obrázku č. 1 je znázorněn základní blokový diagram obvodu EM8500 a vnitřní uspořádání jeho interních funkčních bloků.
Na následujících obrázcích jsou znázorněny příklady konkrétních zapojení obvodu EM8500 pro jednoduché autonomní systémy. Příklad zapojení na obr. 2 obsahuje kromě vlastního obvodu EM8500 akcelerometr pro probouzení (Wake-up sensor) celého systému, obvod reálného času (RTC), externí senzor, řídicí procesor (HOST MCU), bezdrátový Bluetooth Low Energy (BT Smart) blok a samozřejmě vstupní „harvesting“ element – solární článek. Celá aplikace je napájena z akumulátoru (Secondary cell Battery) připojeného na pin VDD_LTS obvodu EM8500, který podle okolních podmínek (osvětlení solárního článku) a energetických nároků aplikace řídí tok energie buď přímo ze solárního článku, nebo akumulátoru a v případě přebytku energie je akumulátor dobíjen.
Ve druhém příkladu, na obrázku č. 3, je aplikace napájena z primárního článku. Pokud je současně připojen i „harvesting element – solární článek“, pak jej obvod EM8500 při dostatečném okolním osvětlení může využít pro napájení aplikace místo primárního článku a umožňuje také prodloužit dobu jeho života. Kromě obdobných komponentů jako v předchozím příkladu je navíc na jeden z napěťových výstupů obvodu EM8500 připojen LCD driver a vlastní LCD displej.
Klasickým příkladem použití je také solární napájení elektroniky hodinek, které s využitím obvodu EM8500 může pracovat i v nepříznivých světelných podmínkách uvnitř místností. V tomto případě je s výhodou využita i jedna z dalších unikátních vlastností obvodu EM8500, což je schopnost velmi rychlého náběhu napájení systému po vystavení solárního článku napájejícího hodinky vnitřnímu osvětlení o intenzitě přibližně pouhých 80 lux, a to i při ploše použitého solárního článku 2,5 cm2. Celý systém je aktivní během několika vteřin.
Nastavení a konfigurace jednotlivých parametrů, hodnot konfiguračních registrů a pracovních módů obvodu EM8500 zajišťuje vestavěná konfigurační EEPROM paměť. Zápis a čtení do této paměti jsou umožněny pomocí sériového rozhraní. Uživatel může zapisovat do EEPROM paměti v libovolnou dobu, nicméně celý obvod musí být dostatečně napájen, dostatek energie musí být alespoň v STS elementu. Uživatel tedy musí zajistit, že zápis informací do konfigurační paměti bude správně dokončen. Programování EEPROM paměti a správné nastavení všech registrů usnadňuje vývojový kit EMDVK8500 a především „wizard“ – průvodce, což je aplikace pro MS Excel, který je dostupný na webových stránkách výrobce [1]. Detailní popis vývojového kitu EMDV8500 a podpůrných SW prostředků pro kompletní konfiguraci obvodu EM8500 bude uveřejněn v následujícím čísle časopisu DPS.
Podrobnější informace o obvodu EM8500 firmy EM Microelectronic a další dokumentace jako datasheet, aplikační listy jsou dostupné zde [2]. Vzorky obvodu EM8500 v pouzdře QFN24 jsou na vyžádání k dispozici v EM Microelectronic. Obvod EM8500 i příslušný vývojový kit EMDV8500 jsou volně prodejné.